sábado, 26 de noviembre de 2011
jueves, 10 de noviembre de 2011
La entropía y la energía "gastada".
En el principio enunciado por Clausius que anteriormente citamos, podemos encontrar la relación con la entropía y la energía liberada en un proceso. Pensemos en un motor. El motor necesita de una fuente de energía para poder convertirla en trabajo. Si pensamos en un coche, la gasolina, junto con el sistema de chispa del motor, proporciona la energía de combustión, capaz de hacer que el auto se mueva. ¿qué tiene que ver la entropía aquí?
La energía que el coche "utilizó" para realizar trabajo y moverse, se "gastó", es decir, es energía liberada mediante un proceso químico que ya no es utilizable para que un motor produzca trabajo.
Este es uno de los conceptos más difíciles de entender de la entropía, pues requiere un conocimiento un poco menos trivial del funcionamiento de motores, frigoríficos y el ciclo de Carnot. Pero para nuestros fines con esta explicación es suficiente.
La energía que el coche "utilizó" para realizar trabajo y moverse, se "gastó", es decir, es energía liberada mediante un proceso químico que ya no es utilizable para que un motor produzca trabajo.
Este es uno de los conceptos más difíciles de entender de la entropía, pues requiere un conocimiento un poco menos trivial del funcionamiento de motores, frigoríficos y el ciclo de Carnot. Pero para nuestros fines con esta explicación es suficiente.
La entropía, el desorden y el grado de organización.
Vamos a imaginar que tenemos una caja con tres divisiones; dentro de la caja y en cada división se encuentran tres tipos diferentes de canicas: azules, amarillas y rojas, respectivamente. Las divisiones son movibles así que me decido a quitar la primera de ellas, la que separa a las canicas azules de las amarillas. Lo que estoy haciendo dentro del punto de vista de la entropía es quitar un grado o índice de restricción a mi sistema; antes de que yo quitara la primera división, las canicas se encontraban separadas y ordenadas en colores: en la primera división las azules, en la segunda las amarillas y en la tercera las rojas, estaban restringidas a un cierto orden.
Al quitar la segunda división, estoy quitando también otro grado de restricción. Las canicas se han mezclados unas con otras de tal manera que ahora no las puedo tener ordenas pues las barreras que les restringían han sido quitadas.
La entropía de este sistema ha aumentado al ir quitando las restricciones pues inicialmente había un orden establecido y al final del proceso (el proceso es en este caso el quitar las divisiones de la caja) no existe orden alguno dentro de la caja.
La entropía es en este caso una medida del orden de un sistema o de la falta de grados de restricción; la manera de utilizarla es medirla en nuestro sistema inicial, es decir, antes de remover alguna restricción, y volverla a medir al final del proceso que sufrió el sistema.
Es importante señalar que la entropía no está definida como una cantidad absoluta S (símbolo de la entropía), sino lo que se puede medir es la diferencia entre la entropía inicial de un sistema Si y la entropía final del mismo Sf. No tiene sentido hablar de entropía sino en términos de un cambio en las condiciones de un sistema.
Entropía y reversibilidad
La entropía global del sistema es la entropía del sistema considerado más la entropía de los alrededores. También se puede decir que la variación de entropía del universo, para un proceso dado, es igual a su variación en el sistema más la de los alrededores:
Para llevar al sistema, de nuevo, a su estado original hay que aplicarle un trabajo mayor que el producido por el gas, lo que da como resultado una transferencia de calor hacia el entorno, con un aumento de la entropía global.
Para llevar al sistema, de nuevo, a su estado original hay que aplicarle un trabajo mayor que el producido por el gas, lo que da como resultado una transferencia de calor hacia el entorno, con un aumento de la entropía global.
Entropía y su relación con las termociencias
Ya que tenemos estos conocimientos previos de lo que es la entropía debemos aplicarlos a las termociencias, supongamos que tenemos un sistema termodinámico, es decir, algo donde se propague el calor, digamos un comal para hacer tortillas de harina, cuando el calor o la energía calorífica se propaga al comal, podemos decir que el comal está calentado por completo, pero estaríamos cayendo en un error monumental debido a que nunca habrá un equilibrio térmico perfecto, porque el comal está en contacto con el aire, y el comal está calentando al aire y el aire le roba calor al comal.
En realidad si pudiéramos de alguna forma observar con unas gafas especiales este sistema enclavado o ubicado que se está llevando a cabo en ese momento podríamos observar un desorden a nivel molecular
Podremos ver también a nivel molecular un gran desorden de partículas del aire chocando unas con otras debido a la cantidad de calor que están ganando, es cuando se dice que la entropía aumenta en el sistema, alguna vez podría estar en equilibrio ese sistema, la respuesta sencillamente es no.
.
En realidad si pudiéramos de alguna forma observar con unas gafas especiales este sistema enclavado o ubicado que se está llevando a cabo en ese momento podríamos observar un desorden a nivel molecular
Podremos ver también a nivel molecular un gran desorden de partículas del aire chocando unas con otras debido a la cantidad de calor que están ganando, es cuando se dice que la entropía aumenta en el sistema, alguna vez podría estar en equilibrio ese sistema, la respuesta sencillamente es no.
.
Suscribirse a:
Comentarios (Atom)